
SHAPES(1) Nanophotonics Programmer’s Manual SHAPES(1)

NAME
shapes − simulate scattering of 2d electromagnetic (E x, E y, Hz) wav es and pulses on metal objects of vari-

ous shapes and with various material properties

SYNOPSIS
Parallel version: mpirun −np number-of-processes −machinefile node-file pshapes shapes-input-file

Sequential version: shapes shapes-input-file

DESCRIPTION
shapes is a program for numerical simulation of electromagnetic wav es and pulses scattering on metal and

dielectric objects of various shapes. In the current version of shapes (2.0) the simulated system is restricted

to 2 dimensions (x, y) and the simulated wav e is (E x, E y, Hz).

Several features distinguish shapes from other programs of this type. First, shapes can be run in parallel on

a CPU cluster under MPI, but it can be run sequentially too. Second, shapes is a multigrid program that lets

you refine space and time resolution in places of special interest. Third, shapes can do all its IO in parallel,

writing HDF5 files preferably on a parallel file system such as PVFS or GPFS. These can be then viewed

and postprocessed with a special tool called chombovis(1). Fourth, shapes takes its input from a simple

human-readable text file. Complex object shapes can be described in terms of multiple rectangles, circles

and triangles, each of which can be assigned different material properties. The figures can overlap and can

be additionally altered by super-imposing masks. Multi-grids can be defined locally in terms of similar con-

structs that build on multiple rectangles, circles, triangles and masks.

shapes implements its computations using finite difference time domain method in combination with the

total-field/scattered-field algorithm and perfectly matched layer (PML) absorbing boundary conditions

(ABCs) on the periphery of a rectangular computational domain. Metals are described in terms of a com-

bined Drude/Lorentz model with an arbitrary number of resonances.

shapes can output various types of data. Each of the computed fields, E x , E y, and Hz can be output, as well

as metal distributions, energy density and spectral response. Multi-grid layout is always output on the gen-

erated HDF5 files. The sequential version of shapes can output data in the Gnuplot format too, but this is

disabled in the parallel MPI version and input file directives that pertain to Gnuplot output are ignored in

this case. In the HDF5 mode, all fields are collated on a single file. In the Gnuplot mode, each field is out-

put on a separate file.

shapes is built on top of the Chombo(3) toolkit for adaptive mesh refinement (AMR) programming and is

made of two separate components, a C++ shell written in Chombo and a set of Fortran-77 subroutines and

functions that implement the physics of the simulation. The C++ shell manages data flow between compu-

tational processes and levels of the multigrid. Chombo takes care of all input, output and parallelization.

The Fortran-77 subroutines can be used in a stand-alone Fortran program, either a sequential one, or a par-

allel one, without change. An example of such a program is provided with the source.

It should be relatively easy even for a novice Chombo programmer to substitute the Fortran-77 subroutines

provided currently with different ones. The code is sufficiently modular for this.

The vision for this project is that down the road utilities and framework will be provided to make this possi-

ble to a casual user of shapes too. But this is less trivial. To begin with input data flows in a fairly compli-

cated way through the Chombo C++ shell to the Fortran subroutines. Furthermore, these and other

Chombo C++ functions interact with each other recursively, since this is how the multi-grid algorithm is

implemented.

OPTIONS
Every keyword used in the shapes input file, see shapes(5) for more information, can be used as an option

too. For example, instead of specifying level0.time = 0.0 on the input file, the same can be done on the

command line, e.g.,

Shapes 2.0 January 12, 2006 1



SHAPES(1) Nanophotonics Programmer’s Manual SHAPES(1)

mpirun shapes level0.time = 0.0 shapes-input-file

but this is not a recommended practice. I haven’t tested it for starters, and it is good to have a full written

record of all options and parameters declared for the run on the shapes input file too. The options and

parameters specified for the run are written on both Gnuplot and HDF5 files as headers.

USAGE
shapes was dev eloped for use in the batch mode. The user is expected to provide an input file, see

shapes(5), that characterizes the system that is to be simulated. The job is then submitted to PBS. The PBS

script should take care of obtaining a sufficient number of nodes, creating the data directory and changing

to it prior to invoking MPI for the run.

The sequential version of shapes can be run interactively or under PBS in a high capacity (as opposed to

the high capability parallel execution) parameter space exploration mode. It can be used to test a given

configuration on a low resolution grid too.

The job will generate multiple output files in the HDF5 or Gnuplot format. The files will contain field data

for the time slices at which they will have been dumped. The frequency of making such snapshots is regu-

lated by setting appropriate parameters on the input file.

The way data is written on the HDF5 files is Chombo specific and a special tool, chombovis(1), is needed

to view and further process the data.

It is best to dump the HDF5 data on a parallel file system, e.g., PVFS or GPFS, especially if there is going

to be a lot of it. It is also best to run postprocessing, e.g., a movie extraction or inspection of specific time

slices, directly from the parallel file system without transferring the data to other systems. Because Chom-

boVis is a rather slow python script that talks do your display using a VTK toolkit and OpenMesa -- all of

which involves a lot of computation, you should not run it on one of the two front end nodes, i.e., jlogin1 or

jlogin2. Instead you should request an interactive PBS job (with qsub -I ), you should then set your DIS-

PLAY variable on the allocated node, allow access to your X11 server, and invoke chombovis on the allo-

cated node. The same applies to extraction of animations (also with ChomboVis) from the HDF5 data files.

In my experience you may actually get a better ChomboVis performance this way than if you were to trans-

fer the data to your desktop workstation and then run ChomboVis on it.

The Gnuplot style output is a normal text file that is human readable. It is organized so that it can be dis-

played with Gnuplot using the splot command.

Both HDF5 and Gnuplot files can be postprocessed to generate GIF animations. This is extremely painful

and slow with the HDF5 system at present, but very easy with the Gnuplot system.

EXAMPLES
You will find example input files in

/soft/apps/packages/photonic-packages/Confs

and example PBS scripts invoking shapes in

/soft/apps/packages/photonic-packages/PBS.

Example outputs can be found in

/soft/apps/packages/photonic-packages/var/run

FILES
/soft/apps/packages/photonic-packages/bin/shapes − this is an easy to invoke script that sets the environ-

ment and then invokes the sequential version of the code.

/soft/apps/packages/photonic-packages/bin/pshapes − is an easy to invoke script that sets the environment

and then invokes the parallel version of the code.

/soft/apps/packages/photonic-packages/bin/shapes2d.Linux.g++.g77.ex − this is the actual sequential

binary.

Shapes 2.0 January 12, 2006 2



SHAPES(1) Nanophotonics Programmer’s Manual SHAPES(1)

/soft/apps/packages/photonic-packages/bin/shapes2d.Linux.g++.g77.DEBUG.ex − this is the sequential

binary with debugging turned on.

/soft/apps/packages/photonic-packages/bin/shapes2d.Linux.mpiCC.ifort.MPI.ex − this is the parallel MPI

binary.

/soft/apps/packages/photonic-packages/bin/shapes2d.Linux.mpiCC.ifort.DEBUG.MPI.ex − the parallel

MPI binary with debugging turned on.

/soft/apps/packages/photonic-packages/src/Shapes-2.0 − this is where the latest source to this version of

the program lives.

/soft/apps/packages/photonic-packages/Chombo-1.4-24Nov2005 − this is where the actual Chombo

libraries live against which this version of shapes has been linked.

/soft/apps/packages/photonic-packages/hdf5-1.6.5 − this is where sequential HDF5 libraries and utilities

live against which this version of shapes has been linked.

/soft/apps/packages/photonic-packages/phdf5-1.6.5 − this is where parallel HDF5 libraries and utilities live

against which this version of shapes has been linked.

ENVIRONMENT
shapes depends on various dynamic libraries. These creep into shapes from HDF5, Intel C++ and Fortran

compilers and MPI. shapes is invoked through scripts that should set LD_LIBRARY_PATH and

LD_RUN_PATH variables to pick up the right libraries.

DIAGNOSTICS
shapes is compiled for production. In this mode Chombo debugging is switched off. Otherwise debugging

slows the execution of the program considerably. This means that when an error condition is encountered

Chombo subroutines will keep going returning nonsensical results. The really dangerous and peculiar fea-

ture of Chombo is that the program may not crash, sic! shapes itself traps numerous error conditions.

These are flagged, but the program currently is not designed to abort.

At this preliminary stage little effort has been invested in making the program foolproof (it is just an

expression, it does not imply disrespect for the prospective users). On the other hand a lot of effort was

invested in ensuring that the program converts correctly formulated input into correct output.

Normally shapes runs silently, but it is possible to make it very chatty. There are seven parameters in the

Chat group of the input file that regulate shapes’ verbosity. These are

chat.print_versions − when set to 1, it makes shapes print RCS versions of every module it is made of. The

author of the code, i.e., me, is printed too.

chat.chombo_verbose − when set to 0, it stops shapes C++ routines from announcing themselves. It can be

set to an integer greater than 0 to make them talk. Setting chombo_verbose to anything other than

zero activates the chat.print_actions option too.

chat.fortran_verbose − when set to 0, it stops shapes Fortran routines from announcing themselves. It can

be set to an integer greater than 0 to make them talk. For parallel runs, setting chat.fortran_ver-

bose to anything other than 0 will result in an insane amount of output.

chat.print_level_0_domain − when set to 1 it makes shapes print information pertaining to the level 0

domain that has been constructed for the run. Set it to 0 if you don’t want this output.

chat.print_levels − when set to 1 it makes shapes print information pertaining to every level that has been

constructed during the run. Activating this parameter activates chat.print_level_0_domain too. Set

it to 0 if you don’t want this output.

chat.print_min_max − when set to 1 it makes shapes print minima and maxima of fields every time an

image is dumped. The values are printed for this current time slice and for the run as a whole up

to this point in time. Set it to 0 if you don’t want this output.

Shapes 2.0 January 12, 2006 3



SHAPES(1) Nanophotonics Programmer’s Manual SHAPES(1)

chat.print_actions − when set to 1 it makes the shapes functions print everything they do including time

stamps. This can be used to observe the recursion, synchronization and data movements between

the levels.

When shapes runs in parallel under MPI, each process writes its diagnostic output on pout.X where X is

the process number.

Apart from these parameters, every Chombo function can be made to talk on its own by setting an appropri-

ate watch flag. For example, in order to make function full_copy talk, set watch.full_copy to 1 or a higher

integer number. Setting it to a number greater than 2 activates Fortran verbosity for Fortran subroutines

called from within full_copy too.

NOTES
It is preferable to dump HDF5 files on a parallel file system, but if such is not available, NFS will do just

fine, however slow it may be, assuming, of course, there is enough space on it.

Extraction of animations from HDF5 files with Chombovis is a major headache.

BUGS
This section documents known design bugs rather than specific implementation bugs of the kind that may

make the program crash or return incorrect results. To the best of my knowledge at this juncture, the pro-

gram doesn’t hav e such bugs. This, of course, does not mean that it really doesn’t hav e any serious bugs of

this nature. It only means, I don’t presently know of any. One does not normally document bugs in this cat-

egory. One fixes them as soon as possible. The documented bugs are the ones one can live with.

shapes is at an early stage still and it is going to evolve in the 3D direction. But its 2D version is quite use-

able now, hence the decision to freeze its development and release it, even though not everything may be

quite buttoned up.

Let me just list some design bugs that I know of and that I will attempt to fix in future versions of the code.

shapes depends on too many dynamic libraries. This is the result of building the program on top of a proto-

type environment, namely, Chombo, but also the result of certain default settings in Linux, MPI,

HDF5 and compilers used to produce the binary. It may be possible to fix this down the road. A

statically linked binary would be preferable for performance reasons. It would make the distribu-

tion of the code easier too.

Input can be provided in natural units only. This is because shapes computes everything in natural units. It

is usually preferable to do so - computations can be implemented more efficiently and accurately.

A detailed procedure for conversion of input data from SI or CGS units to natural units is dis-

cussed in the User Guide.

The input file can be quite difficult to construct, especially if multiple media are distributed in a complex

manner. A graphic tool could be provided to generate the input file automatically. We may con-

sider doing this in the next phase of the project, where we would focus on nano-device optimiza-

tion rather than on the development of the actual simulator.

It is common for explicit time stepping programs to develop noise at some stage, whereupon the computa-

tion diverges rapidly. Multigrid exacerbates the problem, because it is itself an additional source of

noise. I have looked at various ways of alleviating this problem and something may be provided in

future versions of the code. A more insightful mathematical analysis of what happens on the

multigrid boundaries will be needed.

Even with multiple Drude/Lorentz resonances shapes will not account for non-linear and quantum effects

in the media. These may be added to future versions of the program.

shapes is a 2D program. It is going to evolve into a fully-featured 3D simulator.

There is no provision for saving the state of the job and restarting the job at present.

Shapes 2.0 January 12, 2006 4



SHAPES(1) Nanophotonics Programmer’s Manual SHAPES(1)

shapes does not do enough input checking to ensure the robustness of the program. When compiled for

production, it may continue to run even when errors are encountered and flagged.

VERSION
This page documents the January 12, 2006 version of shapes. This version is probably the last major 2D

version of the program. Future development will focus on 3D simulations.

AUTHOR
At present shapes is a product of one author only, Zdzislaw (Gustav) Meglicki of Indiana University (gus-

tav@indiana.edu), with occasional assistance of his cats, Bambosz and Sofa, who tend to type random

strings into the source files in unexpected places. This is going to change as the application develops and

becomes incorporated into a nano-photonics toolkit yet to be constructed.

SEE ALSO
shapes(5), mpirun(1), chombo(3), chombovis(1), dump_fromstate(1), dump_ppms(1), makemovie(1),

"Shapes User Guide".

Shapes 2.0 January 12, 2006 5


